На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Космос

8 383 подписчика

Свежие комментарии

  • Сергей Бороздин
    Мой алгоритм - в статье на Самиздат и дзен "Библия как научный источник истории Мира"Единый алгоритм э...
  • дмитрий Антонов
    прошу прощения, меня тут небыло давно. А где Юрий В Радюшин? с Новым 2023 годомБыл запущен первы...
  • дмитрий Антонов
    жаль, что тема постепенно потерялась. а ведь тут было так шумно и столько интересного можно было узнать, помимо самих...Запущен CAPSTONE ...

Звёздочка моя, солнышко земное (NUC21)

crustgroup(он же Already Yet)

10 июня 2013

Понимание проблем токамакостроения и плазмоудержания у современных обывателей, к сожалению, находится на весьма убогом уровне. Те светлые времена, когда журнал "Наука и Жизнь" выходил тиражом в 3 миллиона экземпляров, уже позади. Сейчас тираж "Науки и Жизни" скатился до жалких 40 000 экземпляров, а сам журнал представляет собой убогую тень своего славного прошлого.

Поэтому я попробую рассказать вам о инженерных проблемах термоядерной энергетики максимально доступно, но в то же время — с сохранением всего объёма технической информации, необходимого для понимания того, во что и где упёрлись учёные, инженеры и строители в деле создания "рукотворного Солнца" на Земле.

Вначале о понятном — о размерах. Вот сравнение (чисто в рамках геометрии установок!) того пути, который уже был пройден и который ещё предстоит пройти термоядерной энергетике:

Изображение
Блоха в левом нижнем углу рисунка — это первый настоящий токамак Т-3, созданный в СССР и продемонстрировавший миру принципиальную возможность создания электростанции, основанной на магнитном удержании высокотемпературной плазмы для создания термоядерной реакции. Маленькая палочка под трубой большого ITERa, который сейчас строит весь мир — это человек, вот он же в сравнении с токамаком Т-3 на старом архивном фото:

Изображение

Как видите — наши отцы даже и не представляли, насколько трудная и масштабная задача предстоит им в деле покорения термоядерной энергии.
Причём, если кто-либо думает, что путь прогресса от Т-3 до ITERа — это лишь вопрос нахождения молотка побольше и организации таджиков на заливку бетонного основания токамака — то он глубоко ошибается.
ITER гораздо технологичнее самого последнего и самого большого современного токамака JET во столько же раз, во сколько раз и сам JET технологичнее старого, доброго, "лампового" Т-3.

Надо сказать, что даже ITER ещё будет, несмотря на всю свою технологичность, всего лишь "наскоро сделанным на коленке" прототипом. Конечно, не на коленке, конечно не наскоро, но именно — прототипом. Например, охлаждение первой стенки реактора в нём будет вестись с помощью обычной воды, в то время, как в серийной термоядерной станции DEMO, строительство которой начнут сразу же после постройки и успешного пуска ITERа — первая стенка плазменной камеры будет охлаждаться уже жидким гелием.

И вот тут мы подходим к одному интересному моменту, который часто не осознаётся многими людьми, которые слушали о термоядерной энергии только в рамках школьного курса физики.
Поясню, в чём состоит тонкий момент термоядерной реакции, которую сейчас хотят запустить в реакторе ITER.

Как вы помните, напрямую повторить реакции по слиянию ядер протия, которые идут в недрах нашего Солнца или же сложный CNO-цикл, который тоже понемногу превращает "лёгкий" водород в гелий, в земных условиях невозможно. Просто потому, что размеры реактора для таких циклов и реакций необходимы просто безумные — речь идёт о том, что термоядерные реакции на лёгком водороде нуждаются в реакторе размером с наше Солнце.

Изображение
CNO-цикл, который тоже греет наше Солнце, вместе с вездесущим протием.


Вообще же. если мы начнём искать варианты минимальных условий для создания самоподдерживающейся ядерной реакции на лёгких элементах (так, чтобы ничего не строить), то мы упрёмся в такие необычные объекты, каккоричневые карлики.
"Коричневый карлик" — это звездоподобный объект, размеры которого будут сравнимы с размерами нашего Юпитера, но масса будет уже в 10-30 раз больше, что уже позволят ненадолго зажечь в своих недрах эрзац-реакцию на лёгких элементах.

Изображение
Сравнение Солнца, красного карлика, коричневого карлика, Юпитера и Земли.

Как видите, по размеру небольшой коричневый карлик ненамного больше Юпитера. Основное его отличие — это плотность и масса. Масса коричневого карлика создаёт более сильное гравитационное поле, поле сжимает карлик, плотность и температура внутри него растут и, вуаля — начинается термоядерная реакция.

Если красные карлики — это всё ещё полноценные звёзды (правда и маленькие), то коричневые карлики — это что-то среднее между планетами типа Юпитера и настоящими светилами. Из-за своей наружной температуры около 1200 К (900 °C) коричневые карлики светятся тёмно-вишнёвым светом. Самые яркие и самые массивные из них могут даже разгореться до тёмно-красного свечения, набрав на пике своей "мощности" температуру до 3000 К (около 2700 °C).

Отличны от настоящих звёзд главной последовательности и реакции, которые идут в коричневых карликах.
В нашем Солнце реакции "протий+протий" и CNO-цикл вносят где-то по 60 и 40% в общее энерговыделение нашего светила. Но проблема в том, что реакция "протий+протий" стартует в звёздах где-то от температуры в 4 млн. К, а CNO-цикл — и при того более высоких температурах — при 12 млн. К.

Изображение
При температурах же, характерных для коричневых карликов, ни реакцию "протий-протий" ни тем более, CNO-цикл — не зажечь. Совершенно же невозможно для коричневого карлика зажечь и реакцию синтеза углерода из ядер гелия-4, которую предстоит пройти и нашему Солнцу где-то через 3,5 млрд. лет, в момент превращения его в красный гигант. Для реакции синтеза гелия в углерод надо поднять температуру внутри звезды "всего лишь" до 100 миллионов градусов Кельвина, чем даже наше Солнце пока, к счастью, похвастаться не может.

Что же жгут в своих недрах коричневые карлики? Ведь их уже нашли больше трёх десятков (в основном, по понятным причинам — у ближайших к нам звёзд), а жечь протий или что-то другое у себя в недрах они не могут.
Для того, чтобы понять, что жгут коричневые карлики, посмотрим на несколько диаграмм. Первая — это энергия связи ядер различных химических элементов в расчёте на один нуклон — нейтрон или протон:

Изображение

График начинается с ядра дейтерия, нелёгкое образование которого из протия мы рассмотрели в прошлом материале. Сам протий — ядро 1H или одиночный протон. на этом графике не показан по понятной причине — энергия связи одиночного протона по определению равна нулю.

Энергия связи дейтрона уже составляет около 1 МэВ на нуклон. Однако, уже для следующего химического — гелия энергия связи в расчёте на один нуклон резко возрастает до 7,03 МэВ на один нуклон. Такая энергия связи характерна для "магической частицы" всей ядерной физики — ядра гелия-4 или 4He, часто называемого ещё и альфа-частицей (α-частица).
Альфа-частица — это сверхустойчивый ядерный организм. Как я уже сказал, превращаться во что-либо иное она согласна только при температурах более 100 млн. градусов, в недрах достаточно массивных звёзд. Кроме того, альфа-частица — это постоянный спутник многих радиоактивных распадов тяжёлых ядер.
Почему? Это тоже очень легко наблюдать на графике. Энергия связи атома урана, например, составляет всего 7,6 МэВ на один нуклон. Разница между энергией связи нуклонов в уране и в альфа-частице — всего около 0,57 МэВ. Рано или поздно ядро урана не выдерживает ужасов социалистического общежития и скученности 238 нуклонов на ограниченной жилплощади — и выталкивает из себя альфа-частицу. Альфа-частица, со своим "блэкджеком и поэтессами", успешно улетает, ну а 238U превращается в... 234U. В то же самое социалистическое общежитие, но уже — с 234 жителями. Подробности, если что, тут.

Исходя из такой мощной энергии связи альфа-частицы мы уже можем по-настоящему понять график распространённости химических элементов во Вселенной:

Изображение

Изображение

Как видите, "магистральное шоссе" синтеза ядер у нас чёткое и однозначное.
Водород горит в гелий, гелий горит в углерод и кислород, кислород и углерод горят в кремний, а кремний горит вжелезо.
Железо — это термоядерные угли, которые уже не могут гореть сами по себе, поскольку имеют максимально возможную для ядер энергию связи.
Практически все элементы группы железа и всё тяжелее этого химического элемента попадает во внешний мир только при взрывах сверхновых звёзд.
Если это вас утешит — то каждый атом углерода, кислорода или азота в вашем теле — уже как минимум один раз побывал в звезде. ну а вся Земля, в целом — это звёздный пепел. По большей части, конечно.

И в этом звёздном пепле можно всё-таки отыскать немного недогоревших головешек. Именно эти головешки и жгут коричневые карлики и собираются поджечь хитрые учёные.
Это атомы, которые притаились в первой части таблицы, но которые имеют энергию связи меньшую, чем наша магическая альфа-частица.
Вот, поимённо, весь этот список: дейтерий и тритий (это у нас изотопы водорода), литий, бериллий, бор.

Всё.

Всего пять головешек оставила нам природа для того, чтобы поджигать наш земной костёр из лёгких ядер. Причём это именно что "огарки" — по сравнению с лёгким водородом — протием этих элементов и изотопов у нас до обидного мало.
Но людишки бы не были Homo Sapiens, если бы не нашли интересный выход из сложившейся ситуации с недостаткомсвинца в организме врага лёгких ядер в составе Земли.

Энергия связи ядра протия, как мы помним, равна нулю. При встрече двух протонов должно произойти невероятное событие: один из протонов должен виртуально превратиться в нейтрон (за счёт слабого взаимодействия) и тут же образовать устойчивое ядро дейтерия — дейтрон, энергия связи в котором чуть больше, чем разница в массах протона и нейтрона.
То есть, конечно, окончательное состояние двух протонов в ядре дейтрона более энергетически выгодное, но вот в начале вопрос того, кто будет сверху превратится в нейтрон, отнюдь не столь очевидно.

А что будет, если протону подсунуть под нос уже готовый нейтрон?

Изображение

Да, всё будет так, как показали в "Матрице". Любой протон, который окажется достаточно близко с тепловым (то есть — медленно идущим) нейтроном, тут же быстро захватит его под руку и образует супружескую пару устойчивое ядродейтрона.
Ну а дейтрон, в принципе, может захватить и ещё один нейтрон и образовать ядро трития.
Тут, конечно, аналогии с людьми можно смело заканчивать — поскольку хоть тритий и неустойчивое ядро, но распадается по β-распаду в 3He, тот самый гелий-3, который надо копать на Луне.

В общем, был бы у нас годный источник тепловых нейтронов — а уже задача наработки термоядерного горючего из обычной воды для нас стоять не будет в принципе. Хочешь дейтерий получай, хочешь — тритий, а хочешь — подожди и гелий-3 получишь.

Что же у нас является самым мощным источником тепловых нейтронов, который был создан человечеством? Да он же, любимый, и является. Ядерный реактор на распаде тяжёлых ядер — урана, тория и плутония. На каждое деление — по два-три нейтрона, плюс ещё немножко — от осколков деления.

Значит, на каждый атом урана можно легко получить атом дейтерия. Просто из воды охлаждающей водяной рубашки первого контура. В которой у нас будет "коктейль" из дейтерия. трития и гелия-3. Доставку термоядерного топлива заказывали?

С топливом разобрались? А теперь ответим на прозвучавший в начале статьи вопрос. А зачем охлаждают переднюю стенку камеры токамака? Как же учёные собираются забрать тепло от плазменного шнура в реакторе ITER?

А никак. Не будут снимать тепло прямо со шнура — не для этого с таким трудом и с такими мучениями грели плазму. Не для тебе ця квітка розцвіла.

Энергию будут снимать с нейтронов. Которые в изобилии будет давать термоядерная реакция синтеза дейтерия и трития в гелий, которую и хотят запустить в термоядерном реакторе. Вот она:

Изображение

Ещё раз, что важно. Энергия при реакции синтеза не выделяется просто так. Часть энергии остаётся в плазме в видезаряженной частицы гелия-4, а часть энергии неизбежно покидает плазму в виде быстрого нейтрона. Нейтрон — частица незаряженная, девушка вольная и улетает со своим "приданным" куда импульс велит.
А приданного — почти что 80% от всего выхода термоядерной реакции. Только 3,5 МэВ энергии от реакции синтеза остаётся в плазме, а 14,1 МэВ улетает куда подальше в виде высокоэнергетического нейтрона, которому это ваше магнитное поле — что слону дробина.

14,1 МэВ — это много или мало?
Это не просто много — это супермного. Такими высокоэнергетическими частицами можно делать всё, что угодно. Например, дробить неделимый торий, который слабенькими нейтронами распада делиться не хочет в принципе. Или — получать из урана плутоний. Или — делить упрямый 238U, который, как и торий, делится нейтронами от распада 235U очень неохотно.
Ну или, опять-таки, окружить токамак за первой, тонкой и охлаждаемой стенкой вакуумной камеры с плазмой, которая для нейтронов всё равно, что бумага, снова-таки водяной рубашкой.

Из протиевой воды, которой у нас — целые океаны по всей Земле. И снова, за счёт нейтронов синтеза, нарабатывать из протия дейтерий, тритий и гелий-3.
Короче, если кто смотрел "Обливион" с Томом Крузом, то мегакипятильники, которые "воровали" с Земли дейтерий и которые Круз смело и героически охранял — это бред:

Изображение

Скрипач Кипятильник не нужен.
Если у тебя есть термоядерный реактор на реакции D+T, то ты наработаешь себе и немножко трития и "трошечки, тiльки для себе" дейтерия на будущее. И плутония. И тория. И урана. Да и вообще — всю таблицу Менделеева.

Философский камень заказывали?
Да, я тут нашёл... В головешках от термоядерного пожара последней сверхновой.

Источник

 

Источник: forum.polismi.org.

Картина дня

наверх