На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Космос

8 383 подписчика

Свежие комментарии

  • Сергей Бороздин
    Мой алгоритм - в статье на Самиздат и дзен "Библия как научный источник истории Мира"Единый алгоритм э...
  • дмитрий Антонов
    прошу прощения, меня тут небыло давно. А где Юрий В Радюшин? с Новым 2023 годомБыл запущен первы...
  • дмитрий Антонов
    жаль, что тема постепенно потерялась. а ведь тут было так шумно и столько интересного можно было узнать, помимо самих...Запущен CAPSTONE ...

Наука и техника (19.06.2017)

Физик: мы близки к получению первых данных о параллельных Вселенных

Американский космолог Лоуренс Краусс рассказал о том, как изменилась космология после открытия гравитационных волн, объяснил, почему были сдвинуты стрелки "часов судного дня", и рассказал о том, сможем ли мы увидеть первое мгновение жизни Вселенной во время Большого взрыва.

Лоуренс Краусс (Lawrence Krauss) — один из самых известных космологов и популяризаторов науки в США. За последние 30 лет он написал десять научно-популярных книг, посвященных космологии и науке в целом, многие из которых стали бестселлерами, а также участвовал в съемках нескольких документальных фильмов и научно-популярного сериала How the Universe Works.

На этой неделе Краусс наряду с другими выдающимися зарубежными и российскими учеными выступил с лекциями о последних открытиях и будущем науки на фестивале Kaspersky Geek Picnic, который проходит в Москве и в Санкт-Петербурге.

— Лоренс, с момента открытия гравитационных волн на детекторах LIGO прошло почти два года. Как изменилась космология и наши представления о рождении и жизни Вселенной после этого открытия?

— Пока еще рано говорить о каких-то глобальных выводах – мы только начали наблюдать за гравитационной Вселенной. У нас пока есть данные только по трем слияниям черных дыр, и никто – кроме врачей, наверное, – не может взять столь небольшое число событий, экстраполировать их и получить что-то интересное.

С другой стороны, кое-что нам все же удалось уже узнать. К примеру, теперь мы хорошо понимаем, что теория относительности работает безупречно и мы можем использовать ее для изучения Вселенной. В прошлом это не было так очевидно, как и то, что черные дыры звездных масс действительно существуют.

Кроме того, последнее событие, зафиксированное LIGO в начале этого года, позволило нам понять, как формируются подобные пары черных дыр. Если бы они возникали внутри двойных звездных систем, то тогда они вращались бы в одну сторону. Похоже, что это не так, но пока мы еще не можем говорить об этом со стопроцентной уверенностью, так как число событий по-прежнему остается небольшим.

Мы сейчас стоим на том же этапе развития, что и Галилей, впервые увидевший луны Юпитера, – тогда человечество только начало понимать, как устроена Солнечная система. Гравитационные волны стали нашим новым окном во Вселенную, через которое мы будем смотреть на нее в нынешнем и следующем столетии.

Многие вещи остаются непонятными, и пока у нас нет ни знаний, ни опыта для того, чтобы найти в данных LIGO что-то новое, касающееся теории относительности и того, как работает квантовая гравитация. Мне, как космологу, интереснее думать не о современных гравитационных детекторах, а о том, что через 50 лет они будут видеть не только слияния черных дыр, но и гравитационные волны, рожденные во время Большого взрыва.

— Смогут ли LIGO или другие гравитационные детекторы доказать или опровергнуть то, что мы живем внутри голограммы или черной дыры?

— Мне кажутся такие идеи несерьезными – они годятся лишь для того, чтобы попасть на страницы газет и интернет-изданий. Пока не существует никаких физических намеков на то, что мы живем внутри плоской голограммы или компьютерной симуляции, в своеобразной "Матрице".

С другой стороны, подобные вопросы все же рассматриваются серьезно по той причине, что они напрямую связаны с теорией квантовой гравитации и проблемой ее проверки, а также с природой пространства-времени.

LIGO и другие существующие и строящиеся детекторы могут наблюдать за гравитационными волнами только в так называемом классическом режиме – они не могут наблюдать за колебаниями пространства-времени, возникающими на самой границе горизонта событий, где на их поведение и формирование будут влиять квантовые эффекты. Поэтому они вряд ли помогут нам найти ответ на этот вопрос.

В будущем, конечно, подобные детекторы появятся, и пока у нас есть много других интересных вопросов. К примеру, мы пока не понимаем, как возникают сверхмассивные черные дыры в центрах галактик, возникают ли галактики вокруг таких черных дыр или же дыры рождаются внутри галактик, а также многое другое.

Конечно, могут быть случайные удивительные открытия, подобные обнаружению того, что Вселенная расширяется все быстрее, но пока у нас нет даже детекторов, которые могли бы зафиксировать такие вещи даже чисто теоретически.

— Если говорить о расширении Вселенной – недавно ваши коллеги нашли большие расхождения в скорости ее роста после Большого взрыва и сегодня. Может ли "новая физика" скрываться там?

— В физике очень часто появляются расхождения, и чаще всего они исчезают сами по себе. Если у вас появляются какие-то интересные результаты, то в 99% случаев они оказываются случайностью или ошибкой, и только в одном проценте – реальным открытием. Мы все надеемся, что эти открытия входят в этот процент, но нужно понимать, что погрешности измерений присущи каждому эксперименту.

К примеру, когда я был молодым, разные эксперименты указывали на две скорости расширения Вселенной – 50 километров в секунду на мегапарсек и 100 километров в секунду на мегапарсек. И то и другое значение считались достаточно точными, и погрешность измерений была небольшой — плюс-минус пять километров в секунду на мегапарсек, однако сами значения при этом различались примерно в два раза.

Текущие расхождения гораздо скромнее — значения скоростей различаются всего на 2-3 процента, однако всем кажется, что это очень серьезные несостыковки, за которыми скрывается что-то реально новое. Я же отношусь к этому "открытию" довольно скептично, но возможно, что и новые, и старые расхождения действительно существуют.

Мне же лично кажется, что это не так, так как, с точки зрения теории, энергия пустого пространства должна оставаться постоянной по целому ряду причин. Поэтому крайне маловероятно, если это не так. Сама возможность того, что энергия вакуума могла меняться в прошлом, интересна нам потому, что такой сценарий позволяет нам гораздо больше узнать о том, как устроена Вселенная и как устроено пространство-время, чем если бы скорость расширения Вселенной была постоянной на всем протяжении ее существования.

С другой стороны, нужно понимать, что Вселенная существует не для того, чтобы исполнять наши желания, и поэтому мне кажется, что на самом деле скорость ее расширения никогда не менялась, и никакой новой физики тут нет.

— Если говорить о мечтах: вы являетесь одним из участников проекта Breakthrough Starshot, насколько вообще можно говорить о том, реализуем ли он и какую реальную пользу мы могли бы извлечь из него?

— Сможем ли мы создать зонд, который сможет двигаться со скоростью в 20% от скорости света? Пока я могу лишь сказать, что это идея в принципе реализуема, однако ее претворение в жизнь будет очень сложной задачей.

С другой стороны, мне кажется, что нам вполне по силам создать технологии, способные разгонять небольшие зонды до скоростей, позволяющих достичь окраин Солнечной системы за несколько дней, а не десятки лет. Подобные аппараты позволят нам всесторонне изучить все планеты и небесные тела за очень короткое время. И базой для их создания станут те разработки, которые будут созданы в рамках "невозможного" Breakthrough Starshot.

И на самом деле, подобная постановка вопроса не совсем корректна – главная цель этого проекта заключается не в достижении каких-то конкретных задач, а в популяризации освоения космоса, почему я, собственно, и согласился участвовать в нем. С точки зрения чистой практики гораздо интереснее выглядит проект Breakthrough Listen.

— Вы являетесь председателем редакции журнала Bulletin of Atomic Scientists, хранителей "часов судного дня". С чем связано то, что вы передвинули стрелку на 30 секунд в сторону ядерной катастрофы, и как мы могли бы отодвинуть ее назад?

— Главное понимать, что наши часы указывают не на абсолютные, а относительные значения. Иными словами, сдвиг их стрелок говорит о том, как изменилась ситуация за год. В данном случае мы просто говорим о том, что сейчас ситуация стала опаснее, чем она была в прошлом году.

Мы подвинули стрелку на 30 секунд в сторону ядерной "полночи" по нескольким причинам. Во-первых, президенты двух ведущих ядерных держав сделали ряд агрессивных заявлений о ядерном оружии и сделали ситуацию вокруг него более напряженной, чем она была раньше. Конечно, дела убедительнее слов, но слова президентов все равно стоят многого в мире политики.

Президент Трамп, как мне кажется, плохо понимает то, что представляет собой ядерное оружие и почему нам важно сдерживать его распространение. Поэтому его фразы о расширении арсенала США и его нежелание участвовать в соглашениях по нераспространению ядерного оружия вызвали большое беспокойство у нас.

Кроме ухудшения отношений России и США, в мире происходили и другие события, которые повлияли на наше решение. Северная Корея продолжает проводить ядерные испытания и пуски баллистических ракет, а также власти США сегодня отрицают существование другой опаснейшей угрозы для существования всей цивилизации в целом – глобальное потепление. Вдобавок, возникли новые проблемы, такие как кибер-атаки и кибер-войны. Все это заставило нас подвинуть стрелку на 30 секунд.

Как можно их повернуть назад? Мне кажется, эту проблему могут решить только простые люди, так как политики давно не прислушиваются к ученым. Они начнут слушать нас только тогда, когда об этом будет говорить все общество, и наш журнал, по сути, и существует для того, чтобы информировать публику и побуждать ее к действию.

— Стивен Хокинг считает, что человечество выживет только в том случае, если до конца текущего столетия мы станем "космическим" видом и приступим к колонизации других планет. Схожие идеи излагал Элон Маск. Насколько они реалистичны?

— Мне кажется, что у нас на Земле хватает проблем, которые нужно решить до того, как мы отправимся колонизировать Марс. В далеком будущем, через несколько столетий, нам действительно понадобится покинуть Землю, однако пока такой нужды нет. Я хорошо знаю Элона, он делает хорошие ракеты и электромобили, но его планы по колонизации Марса пока очень далеки от реальности.

Человечество, на мой взгляд, должно в первую очередь стать земным видом и научиться сообща решать глобальные проблемы, прежде чем мы сможем начать покорять космос. Мы уже постепенно становимся таким видом – в последние десятилетия у нас возникла способность менять облик Земли на глобальном уровне, и нам нужно привыкнуть к этому.

— Если говорить о будущем – сможем ли мы когда-либо увидеть то, что происходило в самый первый момент Большого Взрыва и где будет совершен следующий прорыв в космологии?

— С одной стороны, можно сказать, что если бы я знал, где именно мы совершим прорыв в космологии в ближайшие двадцать лет, то я бы тогда уже занимался этой темой. С другой стороны, если говорить серьезно, то мы сейчас находимся на пороге потенциально эпохального открытия.

Микроволновые детекторы на южном полюсе, которые наблюдают за эхом Большого Взрыва, почти достигли нужной чувствительности для того, поймать гравитационные волны, порожденные в первый момент жизни Вселенной. Если нам удастся их зафиксировать, то мы узнаем много нового о том, как она выглядела в первую миллионную долю от миллиардной доли аттосекунды (10 в минус 18 степени секунды) своего существования.

Кроме того, мы получим первые однозначные данные о том, существуют ли параллельные Вселенные, и решим многие вопросы, которые совсем недавно считались метафизикой, а не чем-то, что можно проверить эмпирическим путем. Поэтому я считаю, что мы живем в одно из самых интересных времен для космологии и астрономии – все лучшее в науке нас еще ожидает.

Источник - РИА Новости .
От винта: Русский аддитивный прорыв

Создатель уникальной аддитивной технологии российский ученый Глеб Туричин рассказывает об установке, способной за считанные часы выращивать огромные металлические изделия, о перспективах развития отрасли в России и о ее выходе на мировые рынки в качестве технологического лидера.

Дома, выращенные роботами из песка и цемента, 3D-принтеры, печатающие предметы из пластмассы и металла любой формы, словно они нарисованные, и даже самолеты из порошка… Аддитивные технологии стремительно распространяются, завлекая умы и обещая трансформировать уклад цивилизации. А в России, как водится, посыпают голову пеплом: «Шеф, все пропало!», «Мы безнадежно отстали!» Однако в действительности аддитивные технологии в машиностроении в нашей стране развиваются едва ли не опережающими темпами по сравнению с лидерами глобального рынка, ведущими свои разработки уже десятки лет.От винта: Русский аддитивный прорыв

Начав четыре года назад, Институт лазерных и сварочных технологий Санкт-Петербургского политехнического госуниверситета (СПбГТУ) создал самую производительную в мире установку по выращиванию изделий большого размера. Заказанное заводом ОДК кольцо диаметром почти два метра, выращенное всего за 15 часов с машиностроительной точностью, вызвало настоящий переполох в западном научно-техническом сообществе, считающем эту прогрессивную сферу исключительно своей монополией. О том, как на самом деле обстоят дела в российской «аддитивке» и каковы ее перспективы на стремительно растущем мировом рынке, «Эксперт» побеседовал с возмутителем спокойствия, главой Института лазерных и сварочных технологий СПбГТУ, недавно возглавившим еще и основной кораблестроительный вуз страны — СПбГМТУ, профессором Глебом Туричиным.

- Удивительное дело, но вообще все забыли, что мы с вами живем в железном веке. И этот железный век, как бы ни говорили сейчас о новых материалах, которые придут на смену металлическим материалам, о новых принципах создания изделий, в ближайшее время еще никуда не денется.

Длится этот железный век у нас с вами примерно последние 3500 лет, и за всё это время количество технологий обработки материала не увеличилось. Технологии менялись, но, как когда-то литейщики отливали наконечники стрел, так до сих пор такие технологии, как литье, очень широко используются в промышленности во всем мире. И эта промышленность сейчас построена в основном на технологиях литья и резанья. Сначала что-то отливается, потом это что-то режется, может быть, деформируется. Это так называемые технологии вычитания. Но, наверное, в последние 10-15 лет развивается новый комплекс технологий. Это не технологии вычитания, а этотехнологии сложения, или аддитивные технологии.
В отличие от технологий литья и резанья, аддитивное производство построено на добавлении материала. Изделия создаются за счет добавления металлического порошка, либо металлической проволоки, либо металлического расплава туда, куда нужно. И такой подход позволяет, с одной стороны, очень здорово экономить материал, а с другой стороны, совершенно революционным образом повышать производительность процессов. И то, что раньше делалось месяцами, сейчас может делаться за часы. И третье, что дают аддитивные технологии и что невозможно получить по-другому, — это возможность создавать изделия такой формы, которую никакие традиционные технологии принципиально создать не могли. То, что я сказал, сейчас, наверное, уже является общим местом, потому что аддитивные технологии на слуху в последние годы. Но от общих мест, от общих положений до конкретной реализации еще довольно далеко, и это обозначает путь, который можно пройти. Идти по этому пути интересно, и на этом пути тех, кто по нему пойдет, ждут не только приключения духа, но и интересные, опять же жизненные поражения и победы.
Сейчас основной из аддитивных технологий, использующихся человечеством, является технология послойного выращивания. Материал для этих технологий приготавливается в виде порошков. Потом из этих порошков создаются тонкие слои, в тонких слоях, там, где нужно, материал расплавляется либо просто нагревается, чтобы новый слой приплавился либо припекся к старому. Потом обработанный слой покрывается новым слоем порошка, и процесс повторяется. Так работают хорошо известные машины по технологиям SLS или SLM, и практически всё, что сейчас имеется в виду под аддитивными технологиями, относится к этим двум технологиям. И всё вроде бы неплохо. Действительно, таким образом можно выращивать изделия почти произвольной формы с очень высокой точностью, в реальности не уступающей точности механической обработки, из достаточно широкого спектра материалов. Но на пути реального промышленного применения встают две вещи. Вещь первая — это низкая производительность послойных технологий.
В реальности производительность машин для послойного выращивания ограничена десятками, редко — сотнями грамм в час. В принципе приемлемо, если, конечно, не нужно создать изделие весом 200 килограмм, например любимую нами среднюю опору газотурбинного двигателя. Тогда получается, что срок производства этой опоры по технологии послойного выращивания составит примерно 600 часов. Вряд ли кто-то способен выждать столько времени, и вряд ли можно обеспечить непрерывную работу технологической установки на протяжении 600 часов. Второй момент — то, что эта опора является изделием диаметром примерно два метра, таких послойных машин просто нет. Невозможно такую точную механику, которая нужна для этих послойных машин, в таком масштабе организовать. А вторая причина, которая является проблемной при внедрении аддитивных технологий, — это качество материала, которое при послойном выращивании получается. Дело в том, что эти порошинки, из которых состоит слой, довольно здорово ослабляют лазерное излучение, использующееся для оплавления порошка в слое, и получается так, что температура верхних порошинок и температура нижних различается. И если мы хотим с гарантией расплавить низ, то мы должны перегреть верх. А если мы не хотим вскипятить верх (а кипение на поверхности — это разбрызгивание и формирование дефектов), то мы низ должны недоплавить. В итоге у нас получаются поры.
Поры — это внутренне присущий всем послойным технологиям дефект. С ними можно бороться, их можно устранять последующим изостатическим прессованием — это когда изделие помещается на долгое время в горячую газовую камеру с очень высоким давлением. Поры таким образом медленно пластически залечиваются. Но технология крайне дорогая, а все-таки реальная промышленность состоит из двух вещей: наполовину, конечно, из техники, а наполовину из экономики, и всё должно быть дешевым. На фоне этих сложностей существует еще одна аддитивная технология.
Технология, которую мы называем прямым лазерным выращиванием, которая свободна от очень многих недостатков послойных технологий. Что это такое? Это технология, основанная на подаче порошка в зону выращивания с помощью газопорошковой струи, специальным образом сформированной в пространстве. Поток газа несет частички порошка. Этот поток газа должен быть правильно организован в пространстве, а плотность частичек порошка должна быть правильно организована внутри этой струи. Не так просто такую струю, которая нужна для выращивания, сделать. Но если такую струю сформировать и направить либо вдоль этой струи, либо под углом к ней сфокусированное лазерное излучение, то мы получаем возможность нагревать и частично оплавлять частички порошка в струе. Тогда, попадая на мишень, в ту зону, где выращивается изделие, эти частички сплавляются друг с другом, но почти от каждой частички остается одно маленькое твердое ядрышко, играющее крайне важную роль.

Дело в том, что эти нерасплавившиеся остатки порошинок становятся центрами новой кристаллизации. В таком случае кристаллизация расплава идет не от поверхности, на которой лежит расплав, а из объема. Объемная кристаллизация при прямом лазерном выращивании — это залог получения мелкозернистой структуры металла. А мелкозернистая структура металла позволяет получать механические свойства выращенных таким образом изделий практически на уровне проката или покова в зависимости от материала, чего никакие другие аддитивные технологии в реальности получить не позволяют, потому что послойная технология всё же обеспечивает структуру, близкую к структуре отливки или микроотливки. Это первый из больших плюсов технологии прямого выращивания. Почти нет проблем со структурой и свойствами выращиваемого материала.
Второй существенный момент — нет пространственных ограничений, потому что рабочим инструментом является технологическая головка, которая объединяет в себе две вещи: сопло для подачи газопорошковой струи и объектив, фокусирующий лазерное излучение. Но это небольшой и нетяжелый инструмент. Его можно дать, например, в руку роботу. И насколько хватит размаха у руки робота, настолько можно вырастить изделие (размах рук робота сейчас практически уже ничем не ограничен). Еще одно ограничение — это ограничение на внешнюю атмосферу. Всё же металл горячий, металл расплавленный. Хорошо бы защитить его от взаимодействия с активными газами. Но не существует больших проблем создать камеру, заполнить ее аргоном, и такие установки — робот с инструментом в руке, камера, заполненная аргоном, и система управления, — на мой взгляд, и являются сейчас самыми перспективными в аддитивных технологиях. Это уже даже не столько завтрашний день, сколько частично сегодняшний, они уже есть в металле. И третье, что для такой технологии замечательно, — она высокопроизводительна.
В реальности это скорости выращивания изделия, которые измеряются не в граммах в час, а в килограммах в час. Это значит, что тяжелое изделие можно сделать за смену-две…
— Так вот, все, что здесь стоит на показ, — продолжает Глеб Андреевич, — не отлито, не отштамповано, а выращено. Это, например, корпус камеры сгорания. Раньше его неделю делали путем вальцовки и механической обработки. Мы растим этот корпус за три часа. Производительность в 100 раз выше той, что есть сейчас. На Международной выставке «ИННОПРОМ», что в июле [2015 года — shed ] прошла в Екатеринбурге, мы демонстрировали примеры изделий, полученных прямым лазерным выращиванием. Скажете, кто сегодня только не занимается аддитивными технологиями? Согласен. Многие уже умеют растить изделие со скоростью 150 граммов массы в час, а у нас — килограммы за то же время. Плюс все, что выстраивается лазером послойно, получается пористым. Для упрочнения надо деталь помещать в газостат и под высоким давлением при высокой температуре долго ее прессовать. Эта операция очень дорогая. А у нас сплошность получается сразу 100 процентов.
«Фишка» заключена в фундаментальной физике движения двухфазных потоков при переносе порошка газовой струей. В ИЛиСТ научились организовывать достаточно длинные ламинарные участки газовых струй, которые несут порошок, и умеют хорошо управлять его переносом и плавлением. Да так, что материал частично наследует структуру и свойства порошка, из которого выращивают изделие. Например, если порошок, из которого выращивают деталь, имел размер субструктурного блока 50 нанометров, то по окончании выращивания и кристаллизации получают размер блоков 100 нанометров. Крупнее вдвое, но, судя по испытаниям, механические свойства полученных изделий — на уровне проката. И таким путем можно делать реально большие вещи, скажем опоры авиационных двигателей, блиски — диски с лопатками. Причем если обычно на изготовление прототипа нового двигателя уходят годы, то при использовании новой технологии это удастся сделать в 100 раз быстрее. Вот это и есть настоящее импортозамещение…
Созданием подобных технологий занимаются и другие компании — американская Optomec, французская BeAM Machines, немецко-японский концерн DMG-Mori. «Мы видим, что есть нечто похожее — это общее движение, и наивно было бы полагать, что мы одни такие умные во всём мире. Во всяком случае, мы не отстали. Скорее, даже впереди
— В чем эффективность вашей машины, — спрашивает Туричина журналист.
--- В эти наши машины заложены две важные вещи: устойчивость выращивания и бешеная производительность. Мы сейчас очень сильно превосходим всех по производительности.

Источник: expert.ru совместно с https://glav.su/forum/5/469/threads/1220468/

Картина дня

наверх